منابع مشابه
Lectures on Harmonic Maps
§1 Background and Setup Let M be an m-dimensional, compact, Riemannian manifold endowed with the metric dsM = gij dx i dx , where {x, x, · · · , x} is a local coordinate system of M. Suppose N is an n-dimensional, complete, Riemannian manifold with metric given by dsN = hαβ du α du , where {u, u, · · · , u} is a local coordinate system of N. Let f : M → N be a C mapping from M into N . Definiti...
متن کاملOn Homotopic Harmonic Maps
(1.1) M' is complete and its sectional curvatures are non-positive. In terms of local coordinates x = (x, . . . , x) on M and y = (y, . . . , y) on M', let the respective Riemann elements of arc-length be ds = gij dx dx\ ds' = g'a$ dy a dy& and r^-fc, T'Vy be the corresponding Christoffel symbols. When there is no danger of confusion, x (or y) will represent a point of M (or M') or its coordina...
متن کاملHarmonic Maps on Kenmotsu Manifolds
We study in this paper harmonic maps and harmonic morphisms on Kenmotsu manifolds. We also give some results on the spectral theory of a harmonic map for which the target manifold is a Kenmotsu manifold.
متن کاملAnother Report on Harmonic Maps
(1.1) Some of the main results described in [Report] are the following (in rough terms; notations and precise references will be given below): (1) A map (f>:{M,g)-+(N,h) between Riemannian manifolds which is continuous and of class L\ is harmonic if and only if it is a critical point of the energy functional. (2) Let (M, g) and (N, h) be compact, and <̂ 0: (M, g) -> (N, h) a map. Then ^0 can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Global Analysis and Geometry
سال: 2019
ISSN: 0232-704X,1572-9060
DOI: 10.1007/s10455-019-09689-2